理学院学术报告-(1)Global dynamics of delayed reaction-diffusion Nicholson’s blowflies equation inunbounded domains;(2)Impacts of the cell-free and cell-to-cell infection modes on viral dynamics
[ 作者:范德军 来源:哈工大(威海)新闻网 浏览:2689 录入时间:2017年5月31日 ]
 

应理学院数学系邀请,加拿大罗瑞尔大学 (Wilfrid Laurier University) 陈玉明教授,将于531日至63日访问我校数学系,期间将作两场学术报告,欢迎感兴趣的学生和老师参加。

报告时间:20176 1日(周四)上午9:00 -- 11:00

          20176 2日(周五)下午3:00 -- 4:00

报告地点:主楼东配楼203室(数学系报告厅)

报告题目:(1Global dynamics of delayed reaction-diffusion Nicholson’s blowflies equation inunbounded domains;(2Impacts of the cell-free and cell-to-cell infection modes on viral dynamics

报告摘要:(1To reveal oscillatory fluctuations observed in the blowfly population, Gurney et al. proposed a model described by a delay differential equation.This model and its modifications, referred to as Nicholson’s blowflies equations,have also been used to describe population growth of other species and hence have been extensively and intensively studied. In this talk, we present some results on these equations. First, we consider the local dynamics. Then we consider the effects of spatial diffusion. This is a joint work with Professor Yi and Professor Wu.

2Virus can disseminate among uninfected target cells via two modes, namely, the diffusion-limited cell-free viral spread and the direct cell-to-cell transfer using virological synapses. In this talk, we propose and analyze a general viral infection model to investigate the impact of these two modes on the viral dynamics. The model also includes nonlinear target-cell dynamics, infinitely distributed intracellular delays, nonlinear incidences, and concentration-dependent clearance rates. Under some reasonable assumptions,the model exhibits a global threshold dynamics. Two specific examples are provided to illustrate that our theoretical results cover and improve some existing ones. When the underlying assumptions are not satisfied, oscillation via global Hopf bifurcation can be observed. Two-parameter bifurcation analyses are carried out to explore the joint impacts of viral dynamics for the interplay between nonlinear target-cell dynamics and intracellular delays and between the two infection modes. This a joint work with Prof. Hongying Shu and Prof. Lin Wang.

    主讲人介绍:陈玉明,分别于1991年和1994年从北京大学获应用数学学士学位和硕士学位,并于2000年在加拿大约克大学(York University)获理学博士学位,2000年9月至2001年6月在加拿大阿尔伯塔大学(University of Alberta)做博士后。从2001年7月起,一直任教于加拿大罗瑞尔大学(Wilfrid Laurier University), 现为该校数学系正教授。主要研究兴趣为动力系统和泛函微分方程理论及其在生物数学和神经网络中的应用。已在包括 SIAM Journal on Mathematical Analysis,  Nonlinearity,  Journal of Differential Equations,  Physica D, Proceedings of the American Mathematical Society, Mathematical Biosciences, Neural Networks 等国际著名刊物发表论文90余篇,其成果被同行广泛引用,曾获安大略省科技与创新部早期研究者奖。主持了4项加拿大国家自然科学与工程理事会(NSERC)科研基金项目,参与了3项中国国家自然科学基金面上项目。积极参与高质量人才如硕士生、博士生、博士后的培养。陈教授与中国学者有广泛交流与合作,曾入选山西省“百人计划”。

文章发布员:杨薇
相关新闻
  • 没有相关文章